980 research outputs found

    Global motion planner for curve-tracing robots, A

    Get PDF
    Includes bibliographical references.We present a global motion planner for tracing curves in three dimensions with robot manipulator tool frames. This planner generates an efficient motion satisfying three types of constraints: constraints on the tool tip for curve tracing, robot kinematic constraints and robot link collision constraints. Motions are planned using a global search algorithm and a local planner based on a potential-field approach. This planner can be used with any robots including redundant manipulators, and can control the trade-offs between its algorithmic completeness and computation time. It can be applied in many robotic tasks such as seam welding, caulking, edge deburring and chamfering, and is expected to reduce motion programming times from days to minutes.This work has been performed at Sandia National Laboratories and supported by the U.S. Department of Energy under Contract DE-AC04-76DP00789

    Reappraisal of Plasmapheresis as a Supportive Measure in a Patient with Hepatic Failure after Major Hepatectomy

    Get PDF
    Major resection of cirrhotic livers can result in hepatic failure, but no supportive treatment has been found to be generally effective. We successfully treated a 63-year-old woman with post-hepatectomy liver failure with plasmapheresis. Following right hepatectomy, the initial postoperative recovery of liver function was favorable, except for ascites. One month later, however, the amount of drained ascites increased up to 2 l/day. In addition, serum cholesterol concentration gradually decreased to around 30 mg/dl, and serum total bilirubin rose to 11.1 mg/dl. Plasmapheresis was performed, and after just 2 sessions, serum cholesterol level was rapidly corrected and prothrombin time was restored. After 3 sessions of plasmapheresis, the usual rebound rise of serum bilirubin disappeared, and the amount of ascites drained also decreased slowly. The patient underwent a total of 5 sessions of plasmapheresis over 2 weeks, after which liver function improved slowly, and she was finally discharged 72 days after liver resection. Mild ascites requiring diuretic therapy persisted over 3 months. She is doing well to date 10 months after liver resection without tumor recurrence or hepatic decompensation. This limited experience suggests that plasmapheresis can be a useful liver support for post-hepatectomy liver failure

    Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action

    Get PDF
    To overcome the conventional limitation of TiO2 disinfection being ineffective under light-free conditions, TiO2 nanowire films (TNWs) were prepared and applied to bacterial disinfection under dark and UV illumination. TNW exhibited much higher antibacterial efficiencies against Escherichia coli (E. coli) under dark and UV illumination conditions compared to TiO2 nanoparticle film (TNP) which was almost inactive in the dark, highlighting the additional contribution of the physical interaction between bacterial membrane and NWs. Such a physical contact-based antibacterial activity was related to the NW geometry such as diameter, length, and density. The combined role of physical puncture and photocatalytic action in the mechanism underlying higher bactericidal effect of TNW was systematically examined by TEM, SEM, FTIR, XPS, and potassium ion release analyses. Moreover, TNW revealed antimicrobial activities in a broad spectrum of microorganisms including Staphylococcus aureus and MS2 bacteriophage, antibiofilm properties, and good material stability. Overall, we expect that the free-standing and antimicrobial TNW is a promising agent for water disinfection and biomedical applications in the dark and/or UV illumination.11Ysciescopu

    Self-supervised deep learning for highly efficient spatial immunophenotyping

    Get PDF
    Background: Efficient biomarker discovery and clinical translation depend on the fast and accurate analytical output from crucial technologies such as multiplex imaging. However, reliable cell classification often requires extensive annotations. Label-efficient strategies are urgently needed to reveal diverse cell distribution and spatial interactions in large-scale multiplex datasets. / Methods: This study proposed Self-supervised Learning for Antigen Detection (SANDI) for accurate cell phenotyping while mitigating the annotation burden. The model first learns intrinsic pairwise similarities in unlabelled cell images, followed by a classification step to map learnt features to cell labels using a small set of annotated references. We acquired four multiplex immunohistochemistry datasets and one imaging mass cytometry dataset, comprising 2825 to 15,258 single-cell images to train and test the model. / Findings: With 1% annotations (18–114 cells), SANDI achieved weighted F1-scores ranging from 0.82 to 0.98 across the five datasets, which was comparable to the fully supervised classifier trained on 1828–11,459 annotated cells (−0.002 to −0.053 of averaged weighted F1-score, Wilcoxon rank-sum test, P = 0.31). Leveraging the immune checkpoint markers stained in ovarian cancer slides, SANDI-based cell identification reveals spatial expulsion between PD1-expressing T helper cells and T regulatory cells, suggesting an interplay between PD1 expression and T regulatory cell-mediated immunosuppression. / Interpretation: By striking a fine balance between minimal expert guidance and the power of deep learning to learn similarity within abundant data, SANDI presents new opportunities for efficient, large-scale learning for histology multiplex imaging data. / Funding: This study was funded by the Royal Marsden/ ICR National Institute of Health Research Biomedical Research Centre

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte

    Toe Tissue Transfer for Reconstruction of Damaged Digits due to Electrical Burns

    Get PDF
    BackgroundElectrical burns are one of the most devastating types of injuries, and can be characterized by the conduction of electric current through the deeper soft tissue such as vessels, nerves, muscles, and bones. For that reason, the extent of an electric burn is very frequently underestimated on initial impression.MethodsFrom July 1999 to June 2006, we performed 15 cases of toe tissue transfer for the reconstruction of finger defects caused by electrical burns. We performed preoperative range of motion exercise, early excision, and coverage of the digital defect with toe tissue transfer.ResultsWe obtained satisfactory results in both functional and aesthetic aspects in all 15 cases without specific complications. Static two-point discrimination results in the transferred toe cases ranged from 8 to 11 mm, with an average of 9.5 mm. The mean range of motion of the transferred toe was 20° to 36° in the distal interphalangeal joint, 16° to 45° in the proximal interphalangeal joint, and 15° to 35° in the metacarpophalangeal joint. All of the patients were relatively satisfied with the function and appearance of their new digits.ConclusionsThe strategic management of electrical injury to the hands can be both challenging and complex. Because the optimal surgical method is free tissue transfer, maintenance of vascular integrity among various physiological changes works as a determining factor for the postoperative outcome following the reconstruction

    The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana

    Get PDF
    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific ‘‘avirulent’’ pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NBLRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector
    corecore